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Significant simplifications and minor corrections are made to a previous second-order 
solution of Graham & Kullar for the lift on a flat-plate airfoil encountering a sinusoidal 
gust in compressible flow. The related cases of a skewed gust in incompressible flow, 
a parallel gust in compressible flow and the generalized case of a skewed gust in 
compressible flow are considered. In addition to the simplifications, the solutions are 
combined into a composite solution that is more accurate than the solutions from 
which it is composed, making it useful for numerical calculations. 

1. Introduction 
Graham & Kullar (1977) presented a second-order solution to the gust response of 

an airfoil in compressible flow. A closed-form solution to this problem is well known 
for the case of a parallel gust incident on a flat-plate airfoil in incompressible flow, the 
classic treatment being that of von Kirman & Sears (1938). When compressibility is 
added to the problem, the solution becomes significantly more complex, and no finite 
closed-form solution is available. For this problem one must resort to numerical 
solutions or approximate methods such as expansion in a small parameter. A first- 
order solution was given by Osborne (1973) and Amiet (1974). In order to clarify the 
problem further, a second-order solution was given by Graham & Kullar (1977). Little 
attention has been given to the problem since then. 

Recently a review of Graham & Kullar’s solution was undertaken with the purpose 
of incorporating it into an approximation scheme for the calculation of lift as 
illustrated by Amiet (1975). The derivation of the Graham & Kullar solution is quite 
involved and the author is grateful to Professor Graham for providing a copy of his 
report (Graham 1978) giving further details on the solution, since this proved 
invaluable in the analysis. In the review process significant algebraic simplifications 
were discovered. These do not at all change the theoretical impact of the solution, but 
they clarify it and make it more useful for numerical calculation. The original solution 
is an involved expression containing Bessel functions, and it was not at all evident a 
priori that any simplification would be possible. 

Graham & Kullar give two different approximations for each case they considered. 
Thus, for the case of a skewed vertical gust in incompressible flow the first 
approximation is to assume a small spanwise wavenumber, k,, while the chordwise 
wavenumber, k,, is arbitrary. This approximation becomes invalid if the limit k,+O 
is taken for fixed k,. Thus, a second approximation is introduced taking k, = O(kJ 
and assuming that both become small. A similar procedure was used for the problems 
of a parallel gust and a skewed gust in compressible flow. 

In this paper a method is found to combine these two solutions for each case to give 
a composite solution which reduces under the appropriate conditions to each of the 
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two approximations of which it is composed. This does not affect any of the theoretical 
conclusions drawn by Graham & Kullar, but rather it adapts the solution for the 
calculation of numerical results by eliminating the need to switch from one solution to 
the other. If the result for a parallel gust in compressible flow is used together with an 
approximate high-frequency solution it is found that the two solutions cover all k, and 
M values with an accuracy of approximately 1 % for the lift amplitude when compared 
with a numerical exact solution. For the skewed gust case the results appear to be 
somewhat less accurate, but still satisfactory. In addition, because the appropriate 
solutions combine so neatly to form the composite solution, it is thought that the 
process leads to a further understanding of the general gust solution. Since the 
composite solution retains the mathematical accuracy of both the individual solutions 
that go to make it up, it is possible that a further examination of the solution procedure 
would reveal an expansion procedure that would arrive at the composite solution 
directly. 

2. The problem formulation 
First the solution of Graham & Kullar (1977) will be presented; the reader is referred 

to that paper for details of their solution procedure. Just a brief review of the integral 
equation to be solved will be presented here before proceeding to the simplifications. 

(1) 
where x and k, represent the chordwise length and wavenumber and y and k, represent 
the spanwise variables; U is the free-stream velocity and w, is the gust amplitude 
normalized by U. A sketch of the gust and airfoil is shown in figure 1. Since the gust 
is imbedded in the main stream, the circular frequency w is equal to Uk,, and so k,  is 
a reduced frequency as well as a wavenumber. 

The vertical gust, imbedded in the main stream, is defined as 

w(x,y, t )  = wo Uei(ot-kzz-%y), 

The integral equation to be solved is given by Graham & Kullar as 

J -1 J-1 J-I 

-ih{(v'/A')K,,[v(l -x)]-(1 + ? / A 2 )  ve-"cKl[v(l +(-x)]d(}[ f(()d(, (2) 
-1 

where v2 = vi- v:, v1 = MA, v, = k,/P, h = kJp2, B = (1 -M2)i.  (3) 
The functions KO and Kl are modified Bessel functions of the second kind; in addition 
in both the derivation of (2) and its solution the following convention is used for 
negative arguments for the modified Bessel functions : 

K,(z eiEm) = ecixmn K,(z). (4) 
Also, the integrals containing Kl are Cauchy principal values. The functions f ( x )  and 
F(x) are related by 

Having determined f(x), the airfoil loading is given by 
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FIGURE 1. Sketch of an oblique sinusoidal gust incident on an airfoil. 

These are exactly the relations given by Graham & Kullar (except for the sign of ih 
in (6) compared to equation (2) of Graham & Kullar, which appears to be a misprint). 
The integral equation is to be solved for the variable F. This equation contains the 
variables k,, ky and the Mach number A4 in only the two parameters Y and A. Thus, 
having solved the integral equation for the zero Mach number case, the same solution 
for F will apply for all M for which Y and h remain unchanged. However, the 
expression for the surface loading and the lift must be calculated from F; since (6 )  
contains M explicitly, the expression for lift will change if A4 becomes non-zero even 
if v and h remain unchanged. Thus, to find the lift for the general case of a skewed gust 
in compressible flow, the three variables vl, v2 and A must be specified; from (3) this 
is the same as specifying k,, k, and M .  

For a clearer understanding of this formulation, it is worthwhile to consider its origin. 
Graham (1970b) derived (2) beginning with a form of the Posio integral equation, 

given by Watkins, Runyon & Woolston (1955, equations ( 1 )  and (B 18)). Ap is the 
pressure jump across the surface, w is the upwash and K is a kernel function, given by 
equation (B 18) of Watkins et al. or Graham (1970b, equation (23)). The 
transformation to (2) above is then made by replacing Ap using (6)  and manipulating 
the result. Although the Posio integral equation is for a non-skewed gust (the two- 
dimensional case), Graham (1970b) has given a similarity relation between the two- 
dimensional and three-dimensional compressible gust cases which is used to extend the 
two-dimensional Posio integral equation to the three-dimensional result in (2). 

As a further clarification of the solution, it is useful to have a better understanding 
of the variable f ( x ) .  Consider (6)  for the case of incompressible flow, M = 0. This 
equation can be compared with a standard result of airfoil theory given, for example 
by equation (6) of Amiet (1990) which relates the bound vorticity, y(x), of the airfoil 
to the airfoil loading Ap(x). For a sinusoidal time dependence, (6)  above is seen to 
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correspond with (6) of Amiet if f(x) = y(x)/(2U). In fact, the solution for the 
incompressible case is often formulated directly using the bound vorticity as, for 
example, von Karman & Sears (1938) wherein equation (16) gives the overall lift in 
terms of the bound vorticity. 

3. The solution and its simplification 
3.1. Skewed gust in incompressible $ow 

Consider the case of a skewed gust in incompressible flow. For the limit of zero 
spanwise wavenumber, v,, the solution is exactly the Sears function, S(A). Thus, 
assuming a small parameter u,, Graham & Kullar express the functions F(x) andf(x) 
and the lift coefficient, C,, in powers of v2. Introducing these expansions into (2) and 
equating powers of v2 leads to a sequence of integral equations. It is possible to solve 
these integral equations, the result up to second order being 

where for the M = 0 case h = k,, v1 = 0 and v2 = k,. The lift coefficient is defined as 
the lift/unit span normalized by i cpU2 where c, U and p are the chord, the free-stream 
velocity and the density. Because several small-parameter expansions are taken in this 
paper, in order to retain clarity the expansions are shown explicitly; thus, C,(k,,k,) 
represents the exact lift coefficient for the incompressible skewed gust case and 
[C,(k,, kJ]y2+0 represents the expansion of this for small v,. S(A) and C(A) represent the 
Sears function and the Theodorsen function respectively, 

2 1 
7 ~ h  [Hr)(h)  - iHp)(h)] 

S(h) = - 

given by 

(9) 

and 

where H z )  are the Hankel functions of the second kind of order n. The functions A(A) 
and B(A), in the form given by Graham & Kullar and with which this author agrees, 
are 

C(4 A(h) = i (y  - 2 In 2) + (y - 2 In 2 - $) ~ 2ih (1 1) 

and 

1 
B(h) = C(A) --- J,(h)+--J,(h) (i :A) 4h 

B(h) is of sufficient complexity that one might hesitate to use it for calculations. 
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However, it can be greatly simplified. With a significant amount of manipulation the 
Sears function S(h) can be factored out and B(h) can be written exactly as 

B(A) = -$(A) y - - + l + -  - + 3  C(A) . [; ; 2i(zi A h  1 1 
Using this result, the function A(A) S(A) + B(h) in (8) becomes 

This represents a significant simplification over (1 1) and (12), and shows that the Sears 
function S(h) is an overall factor of the lift coefficient for the second-order solution. 
Because of the detailed nature of the algebraic derivation, (12) and (13) were checked 
by calculating each for specific h value and affirming numerical equality. 

As noted by Graham & Kullar, (8) does not hold for h = O(v,). The term containing 
the factor v2,1nv2 in (8) becomes infinite for h+O. For this range another derivation 
was made with the assumption that h = ccv, -+ 0 with a = O( 1). This leads to the result 

= 1 +ih In v, +ih(y - 2 In 2) - qv, S+ q2v;(+y-+ln 2 + a2 +$ ln v,) [c~~) l , , , ,  
+ iv, hqS(;-- 2y + 4 In 2 - 2 In v,) - h2(y - 2 In 2 +In v , ) ~  + O(vi), (15) 

with an argument of v2/h assumed for r ]  and 8, where 

r](v,/h) = (1 + ~ 2 / v $ ,  s ( ~ , / A )  = - i In (7 + h/v,). (16) 
Again this agrees exactly with Graham & Kullar’s solution. As pointed out by Graham 
& Kullar, this reduces to the appropriate limits for both cases k, -+ 0 and k, + 0. Since 

+ O(AS), 
1 +~h2(C,-++lnh) 

1 - ih(C, + In A) 
S(A) = 

where C, = ;in:+y-ln2 (18) 
and y is Euler’s constant, one notes from (15) that CL reduces to the small-h expansion 
of S(h) for k, = 0 as expected. For k,  = 0 one finds from (15) that 

which Graham & Kullar note is the small-perturbation expansion for a sinusoidally 
twisted wing of infinite span in steady flow. An expansion for C(A) useful in the 
derivations is 

Written in this manner, there are no explicit O(h2) terms. 

C(h) = [ 1 - iA(C, + In h)]-l+ O(A*)). (20) 

3.2. Parallel gust in compressible flow 
As noted above, the same solution of the integral equation (2) for F(x) holds for this 
case by taking h = k,/p2 and v = ik,M/p2 = iv,. Thus, the results for the 
incompressible skewed gust given above represent the major part of the effort needed 
in the derivation of the following cases of a parallel gust in compressible flow and a 
skewed gust in compressible flow, The only additional change needed to the previous 

8 FLM 254 
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solution is to account for the exponential factor in (6) .  With this consideration, the 
solution corresponding to (8) for this case with v1 -+ 0 was found to be 

1 C(h) +C(h)-1 3i l}v: [ ::fi;;]vl+O = 1 - { (c,, - In 2 + In vl) - + - [2 lh ] h2 2h 4 2 
+--- -+U(v!). 

(21) 
Corresponding to (15) the result for h = O(v,) + 0 was found to be 

with f ( M )  = (1 -B)h M+/3ln(l +p)-ln2. (23) 
The functionf(M) was first introduced by Miles (1951), and should not be confused 
withf(x) in (2), ( 5 )  and (6);f(x) is not used explicitly in the remainder of this paper. 
The first term on the right-hand side of (22) was written in the manner shown only to 
simplify the expression; if desired, it could be expanded for small A. Again, these 
expressions are the same as those of Graham & Kullar, except that there are a few 
minor differences between (22) (after expanding the first term for small A)  and their 
corresponding result. Also, (14) has been used to simplify (21) compared to the result 
given by Graham & Kullar. 

3.3. Skewed gust in compressible $ow 
Finally, for the general case of a skewed gust in compressible flow, the result 
corresponding to (8) is 

[Bc,(', v,M)]v+o = 1 +vz{(y-21n2+1nv) -+- 1 C(h) +C(h)-l i 
2nwo S(h) [4 2ih] 2h2 

' 2  

-%+ O(v3), (24) 
2h 

where it was necessary to assume both v1 --f 0 and v2 +- 0. Thus, the case v1 = v2 = U(1) 
is excluded even though it satisfies v = 0; this case will be considered later. 
Correspondmg to (1 5), the result for h = U(vl) = U(v,) + 0 is 

v4 
4A2 

+ [$q2v2 - 2h2(y - 2 In 2) - 2ihvy61 In v - 2 - h2(ln v ) ~  

+ q2v2(iy -a- In 2 + 6') + ivhyS(;- 2y+4 In 2) 
- h2(y - 2 In 2)2 + 0(v3) (25) 

(26) 
Again, this is basically the result of Graham & Kullar (except for a sign difference in 
(24) and a few small differences in (25)), but with (14) introduced as a simplification. 
Equation (24) encompasses both (8) and (21), and (25) encompasses both (1 5 )  and (22). 

with an argument of v / A  assumed for 7 and 6 where 

y(v/h) = (1 + h2/v2)+, ~ ( v / h )  = i n  - i In (7 + h/v). 
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4. Composite solutions 
4.1. Skewed gust in incompressible flow 

It is possible to fairly simply combine these three pairs of solutions to form three 
composite solutions by noting a fundamental relation between the solution pairs. First 
(8) and (1 5) will be combined. Using (1 7) to factor S(A) from (1 5 )  gives 

U a  

2h2 +~ui(--+C,+lnA)-b h S + O ( u @ ,  (27) 

with an argument u 2 / A  assumed for g, r] and S and where 

g(u,/h) = ln(u2/h)-~i.n+(iu2/h)~~-ln2. (28) 
The functions r] and S are given by (16). 

Now the opposite expansions of (8) and (27) will be taken; that is, the h = auZ + 0 
expansion of (8), with a = O(1), and the u2 --t 0 expansion of (27) will be made. Taking 
the u2 + 0 expansion of (27) might at first thought seem pointless since the equation has 
already been expanded for small v2 through the expansion h = av, + 0. However, this 
keeps v2 and h in a fixed ratio. In contrast, when up 4 A, factors such as 6 and r] that 
remain in (27) become simplified in (29) below. Expanding (27) gives 

-;u; +$ui(y -2 In 2 +In v2) (C, + In h +;) + O(ui). (29) 
This is found to be the same result as the expansion of (8) for h = o ~ v ~ + O  with 
a = O(1). That is, 

{[cI,(kz ~ y ) / s ( h ) l ~ = a ” ~ ~ ~ } ” ~ ~ O  = {[cL.(kz, k g l ) / s ( A ) l ” z ~ O } A ~ ” ~ + O .  (30) 
This observation provides the means to easily derive a composite solution. Thus, define 
a general solution as the sum of (8) and (27) with (29) subtracted. That is, 

(31) 
The composite result for the skewed gust in incompressible flow is thus 

C(A) C(h)-1 1 u; [ i n ]  --I 2 7  
l+iAg+ (y-21n2+lnuZ) 1+- + { [CL.(kz, kJlcomposlte = 

2nw, S(h) 

- hZg2 - A2g(C, + In A - i )  +$ui C, + In (C, +In A- y + 21n 2 -In v2), (32) 

with an argument u2/h assumed for g .  Because of (30) this result is easily seen to reduce 
to the proper limits for u2 --f 0 and for h = auZ + 0. It also reduces to (19) for h + 0. This 
can be compared to the first-order solution of Amiet (1976b); the function g(u,/h) here 
is the function g in (7) of that paper. There is a misprint of an extra bracket), in the 
first line of that equation. Also, g(u, /A)  is the functionf(A4) in equation (8 b) of Amiet 
(1974) if one substitutes iM for u,/A. 

( l )  

8-2 



220 R. K. Amiet 

By combining the two solutions in this manner, however, a new difficulty was 
introduced. Although the composite solution does give the proper limit for h + 0 with 
v2 fixed, it does not approach the point A = 0 with the proper slope. The A + 0 limit of 
(1 5 )  gives the correct limit which is 

-= c ~ ( v ~ )  1 + ih(1- nv2) (y + In v2 + I - 2 In 2) + iihnv, - tnv2 2nw0 

+fvi($? +r-t- 2 In 2 +In v2) [ 1 +ih(C, + In A)] + O(v3. (33) 
In the process of forming a composite solution this result was altered. A correction of 
the lift result for this difficulty is made in $6 below. 

It is worth noting that the ability to combine the two solutions into a composite one 
in the manner performed here depends on (30). This type of relation is violated for even 
simple functions, although it appears to hold in the present case. A simple example for 
which it does not hold is 

The two expansion procedures above, v2 --f 0 and h = O(v2) + 0, could be restated using 
01-l instead of v2 as the independent variable, based on the relation A = av2. The two 
expansions then become a-’+0 with h fixed and h+O with a fixed. Thus, for 
illustration purposes, expanding (34) for x+O and y+O can be considered an 
equivalent procedure to the expansions above. Expanding (34) for x+O gives 
(1 -x2 /y2 )  x2 and expanding it for y + O  gives (1 -y2/x2)y2. Taking the opposite 
expansions, the dominant term for the y + 0 expansions of the former result gives x4/y2 
which is not equal to the dominant term for the x --f 0 expansion of the latter which is 

4.2. Parallel gust in compressible jow 
The analysis proceeds in the same manner as for the above case. Factoring S(h) out of 
(22) gives 

y4/x2. 

- h2f(M) (C, + In h -:) -ih2M2(C, + In h -%p 1 2  + 1n;M) + O(v:). (35) 
Expanding for v1 + 0 gives 

- h2~Ma(ln+M-+) (C, + In h +:) + O(v:). (36) 
Combining (21), (35) and (36) as in (31) gives for the composite solution 

-((~,--ln2+lnv,) I+- C(h) C(h)-1 --}2 1 [ i h ] +  2 2 
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This is better behaved than the corresponding equation (32) for the preceding case. 

For that case there was a difficulty when A + 0. Using the similarity, v2 /A  + iM, the 
corresponding limit for the present case is M - t  ioo, which is not a case of interest. Thus, 
(37) is satisfactory as it is, and a correction term is not necessary, although the solution 
will be put in a preferable form in $ 5  below. 

As was pointed out, (22) differs slightly from the result given by Graham & Kullar. 
Because of the complexity of the derivation, one would like some verification of the 
correctness of the present result. The fact that (21) and (35) are related by (30) gives 
some reassurance that there were no algebraic errors in the derivation, but this is not 
conclusive proof since (30) has not been independently verified. 

For the two-dimensional incompressible case, the lift acts at the quarter-chord point 
as shown by von Karmh  & Sears (1938). An interesting question asked by one of the 
reviewers is whether this also holds for the present analysis. For the incompressible 
case this interestinp result derives from the fact that the distribution of loading behaves 
as [( 1 - x)/(l + x)]%, independent of the gust frequency. This does not hold for M + 0 
even for the first-order correction (Amiet 1974, equations (14E( 18)). Expressions for 
the pressure distribution are not given here since these generally are more complex and 
could not be calculated in closed form. 

4.3. Skewed gust in compressible $ow 
As before, factoring S(h) from (25), the lift can be written in this limit as 

v2 v': 
+iv2(C, + In h -+) ++-?+ 0(v3), (38) 21h 4h 

with an argument v / A  assumed for g ,  y and 6. Expanding for u + 0 with h fixed, 

-(21n2-y-ln V ) ~ V ~ ( C ~ + ~ ~ A + + ) - ~ V ~ ( C , + ~ ~ A ) ~ + ~ ( U ~ ) ,  (39) 

which is the same as the h = O(u) + 0 limit of (24). Combining (24), (38) and (39) as 
in (31), the composite solution is found to be 

- A2g2 - h2(C, + In h -;) g (C, +In h - y + 2 In 2 -In v), (40) 

with an argument of v / A  assumed for g so that 

g(v/A) = In ( v /A)  +in + iv@/h -In 2 (41) 

and 7 and 6, also functions of v /A ,  given by (26). 

have the correct slope as h = 0. A correction for this is given in 96 below. 
Just as for the incompressible skewed gust case, this composite solution does not 
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5. Comparison with an exact solution 
It should be noted that both v1 and v, are required to be small for the general case 

of a skewed gust in compressible flow given by (24) and (25). If v alone is small with 
O(vl) = O(vJ = 0(1), an approximate solution can be found by another method. In 
particular, an exact solution for the case v = 0 will be given. 

The relevant differential equation for this problem is from equation (1) of Amiet 
(1974) : 

[ V 2 - M 2  ( R t  --+- aax).] $(x,y,z , t )  = 0, 

where the coordinates are normalized by the semichord b and y denotes the spanwise 
direction. Letting 

(43) i(wt+hM%+k, y) $(& Y ,  z ,  t> = $o(x, 2) e 

(42) becomes (44) 

Letting vl = v2 and z = Z/p, this becomes just Laplace's equation, and the lift is given 
by equation (14) of Amiet (1974) or by Osborne (1973) as 

Equation (45) is exact for v = 0, but there has been no expansion in v for small but non- 
zero v. It is worth noting that the solution of (2) for v = 0 is independent of the value 
of v,. The parameter v1 enters only through (6). l%e solution of (2) when v1 = v2 += 0 
is the same solution as for the classic Sears case for which v1 = v2 = 0. 

Now, a more accurate form of the composite solution is found by manipulating the 
terms to match the result given by (45) while not violating the other assumptions of the 
expansion. Thus, for the general case of a skewed gust in compressible flow (40) 
becomes 

- (C, + In h -+) A2g+iv2 C, +In A (C, +In h - y + 2 In 2 -In v), (46) 

with an argument of v / h  assumed for g. A similar modification can be made to (32) and 
(37) for a skewed gust in compressible flow and a parallel gust in compressible flow, but 
the results are contained in (46). Equation (46) should also have a correction to make 
the slope zero for A 4 0  as discussed below. 

Of course, there is an arbitrariness in the form of the final result since it is not exact. 
One may try to cast the result in a form that satisfies some additional criterion. The first 
term on the right-hand side of (46) is the first-order solution of Amiet (1974, 1976b). 
At that time it was put in this form with the exponential factor, which is not required 
by (49, partly because this gives the proper v-l decay for large v ;  the slope of the 
asymptote is then correct, even though the actual magnitude is not. Although the 

( 
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solution was not intended to be used for large v, it was hoped that having the correct 
asymptotic slope would delay any significant deviation of the approximate solution 
from the exact solution. 

6. A correction for small h 
Equation (33) shows that the variation with h of the magnitude of the lift should 

have a zero slope for h+O. However, (32) has an infinite slope at this point even 
though it is correct to O(vi) in the two limits v,+O and h = O(v,)+O. For example, 
a simple expression which is zero to O(vi) under these two limits but has infinite slope 
at h = 0 is 

In fact, a term such as this can be used to cancel the infinite slope at h = 0 without 
affecting the order of accuracy of the solution. If (29) is subtracted from (8) one finds 
the expression that, when added to (27), gives the composite solution, (32). That is, 
since the second term of (31) behaves properly at h = 0, the difference between the first 
and third terms on the right-hand side of (3 1) contains the terms producing the infinite 
slope at A = 0. An examination of this difference shows that the following result, which 
is very similar to (47), corrects the improper slope at h = 0: 

~ ( h ,  V J  = hviDn (A' + v$- In A]. (47) 

-~[C,+ln(A2+v~)~]3+~Co+lnh)3-~[Co+1n(h2+v~)~]+~(C,+lnh).  (48) 

While maintaining the same order of approximation this can be simplified to 

There is another method of correcting the solution which the author finds preferable 
since it does not require adding additional terms to the equation. On carefully 
examining the origin of the terms producing the improper behaviour, one finds that 
changing the argument of C(h) and a few associated terms in (32) also corrects the 
improper behaviour. Thus, for the case of a skewed gust in incompressible flow the 
following equation gives the proper behaviour at h = 0 while retaining the same order 
of accuracy : 

- h2g(C, + In h -;) +# C, +In 8 (C, + In 8 -7 + 2 In 2 -In vZ), (50) ( 
with 8 = (A2 + v:/e)i, h = k, and v2 = k,. The factor e-l in the definition of 0 is rather 
arbitrary since it was introduced solely to give better agreement with Graham's 
numerical solution at the point A = 0. This is the only parameter in the solution that 
might be considered an 'adjustable constant'. Since the factor vi in 8 is itself somewhat 
arbitrary, multiplying it by a factor other than unity is not such a great additional 
assumption. 

Equation (50) further illustrates the intent of this paper. This is not simply to derive 
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an accurate approximation to the lift function, but rather to further understand the 
solution and to cast it in as simple a form as possible while retaining the proper 
behaviour for all the appropriate limiting cases. Thus, the author finds the correction 
in (50) preferable to that in (49) since it strives to find a more proper structure for the 
equation rather than just adding a correction, even if this involves a certain amount of 
speculation in guessing the structure. 

For the case of a skewed gust in compressible flow a similar modification of (46) 
gives 

- h2g(Co + In h -4) + ~ v z ( C o  + In 0 -i/@)(Co + In 0 - y + 2 In 2 -In v), (51 )  

with an argument of v / h  assumed for g .  This is the most general result and will be used 
in the calculations below. The definition of 0 for ( 5 1 )  is the same as for (50). Note that 
there is no correction for a parallel gust, with ( 5 1 )  giving the same result as (46) when 
v2 = 0. 

7. Calculated results 
In addition to giving a firmer theoretical grasp of the problem, the above results are 

useful for numerical calculations. To judge the accuracy of the results, they will be 
compared with the numerical results of Graham (1970a, b). The numerical results are 
the actual values of Graham, which the author wishes to thank Professor Graham for 
supplying. When v2 = 0 the parameter v corresponds to the parameter ,LA used by Amiet 
(1975) in which the (M,h)  variable space is divided into low-frequency and high- 
frequency regimes. In the same manner, the present solution will be used in conjunction 
with the same high-frequency solution to see how thoroughly the two solutions cover 
the A, vl, v2 variable space. All figures presented here were drawn by a computer driven 
plotter, connecting calculated points using straight line segments. This eliminates the 
possibility of human error in the plotting process. 

7.1.  Parallel gust in compressible flow 
First the v2 = 0 case of a parallel gust in compressible flow is considered. Stated 
another way, this is the classical Sears problem, but with the addition of 
compressibility. From one viewpoint this is the simplest case since a correction near 
h = 0, as given by (51 ) ,  is not needed. Figure 2 shows several of the solutions discussed 
here. Two of the lines are the basic solutions of Graham & Kullar, one for v1 + 0 with 
fixed h given by (21), the other for v1 = O(h)+O given by (22). Also shown is the 
composite solution given by (37) and the improved composite solutions given by (46) 
or (51). The composite result is seen to be an improvement over the basic Graham & 
Kullar result when compared to the numerical results of Graham, and the improved 
composite is even better. The improvement obtained by combining the solutions into 
the composite form is better than one might have expected beforehand. 

The comparison for the v, = 0 case is continued in figure 3 in which the results for 
several Mach numbers are compared with numerical results and with a high-frequency 
approximation. For this comparison the results are seen to be exceptionally good. 
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Chordwise wavenumber, k, 
FIGURE 2. Comparison between the lift solutions for the parallel gust compressible flow case. 
M = 0.6. G1, Graham & Kullar first solution, (21); G2, Graham & Kullar's second solution, (22); 
C1, composite solution, (37); C2, improved composite, (46); symbols: Graham (1970b) numerical. 

0 

FIGURE 3. Small v (v, i in, (46)) and large v (v, > +IT, Amiet 1976~) lift solutions compared with the 
numerical solution (symbols) of Graham (1970b). k, = 0. 

Previously, the author has used either a criterion of vl = 0.4 or v1 = as the division 
between the low- and high-frequency regimes, depending on the particular approximate 
solutions used. With this improved low-frequency solution it appears that the value 
v1 = is a good value for the division for the parallel gust case. This accuracy does not 
appear to hold for the skewed gust case, v2 + 0, as will be shown below. The parallel 
compressible gust case is a less stringent test of the solution procedure than is the case 
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FIGURE 4. Comparison between the lift solutions for the skewed gust compressible flow case. 
v = k, = 0.25. G1, Graham & Kullar first solution, (8); G2, Graham & Kullar second solution, (15); 
C, composite solution, (46) ; symbols: Graham (19704 numerical. 

of M = 0 with v, + 0. For the parallel compressible gust case v-tiv, = iMh; but M is 
limited to M < 1 so for this case the range of v is limited for a given value of A. In other 
words, v --f 0 if h + 0 for a parallel compressible gust, but this is not necessarily the case 
for a skewed gust. As noted by Amiet (1975), this criterion of v1 = in can be interpreted 
in terms of an average wavelength. If A, is the acoustic wavelength for upstream 
travelling waves and A, is the wavelength for downstream travelling waves, then setting 
2h;ig = h;l+ hi1 leads to the result that 4haug = c. That is, compressibility begins to be 
important when the acoustic wavelength is smaller than four times the scattering body 
dimension. 

7.2. Skewed gust in incompressible flow 
As noted above, this case gives a more rigorous test for the approximate result than the 
parallel gust case since h can be zero without v being zero. Figure 4 shows a calculation 
for the case k ,  = 0.25 and M = 0. Both results of Graham & Kullar, (8) and (15), are 
shown, along with the composite solution, (46), without the correction given by (49) 
or (51). Whereas the small-v solution of Graham & Kullar for the k, = 0 case in figure 
2 gives no difficulty when h-+O, for the k, =k 0 case figure 4 shows that the small-v 
solution, (8), becomes infinite when h -+ 0; in the first case vl --t 0 when h -+ 0, but in the 
second case v2 is fixed. Thus, the second form of Graham & Kullar, (15), is essential 
when k, + 0. The composite solution gives an improvement over either solution alone, 
but the improper slope for h --f 0 is clearly evident. The hump in the curve near h = 0 
is only of magnitude v;, as required by the approximations used, but it is a characteristic 
that is undesirable. The result corrected for this h --f 0 difficulty using (50) is shown in 
figure 5. The slope at h = 0 has been corrected to zero, completely eliminating the 
inappropriate hump in the curve in this region. Unfortunately, there are insufficient 
exact numerical points to give a thorough evaluation for the corrected result. It should 
be noted in figure 5 that (51) is not exact when h = 0; it may appear so from the plot, 
but (51) is still only accurate to O(v;) for M = h = 0. 
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FIGURE 6. Small-v and large-v solutions compared with the numerical solution (symbols) of Graham 
(1970~). k, = M = 0. C, Composite solution, (51); H, large-v solution (Adamczyk 1974; Amiet 1976). 

Finally, figure 6 shows the variation of the lift coefficient with v for fixed A, with both 
the present small-v solution and the large-v solution (Adamczyk 1974; Amiet 1976~) 
shown. For the parallel compressible gust case in figure 3 the value v = was seen to 
be a good value at which to change from the small- to the large-v solution. For the case 
of a skewed incompressible gust in figure 6 the small-v solution is less accurate, and 0.5 
appears to be a better value at which to change to the high-frequency solution. 
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8. Conclusions 
For the parallel gust in compressible flow the composite solution, (51), gives results 

that are more accurate when compared to exact numerical results than might have been 
expected. This is partly due to the process of forming the composite solution which 
seems to cancel errors in the fundamental solutions that make up the composite 
solution and partly due to the fact that (51) was cast in a form that becomes an exact 
solution to the case of a flat-plate airfoil encountering a skewed gust in compressible 
flow with v = 0 (vl = vz). This condition occurs both when k, = M = 0 (the Sears 
problem) and when the sweep speed of the gust-airfoil intersection point, for a skewed 
gust, is sonic relative to the fluid (pk, = Mk,). Mathematically, the composite solution 
is accurate to O(v2) for u+O with fixed h and for h = O(v)-+O. For the case of an 
incompressible skewed gust the accuracy is acceptable, but not as good as for the case 
of a parallel gust in compressible flow. The initial form of the composite solution gave 
the incorrect slope for A + O  with fixed v, but this was corrected either by adding a 
correction term given by (49) or by modifying the argument of C(h) as in (51). When 
used together with a solution for large v, a good approximation to the lift can be made 
over the entire (vl, v9, A )  variable space for subsonic flow. 

This paper is dedicated to Professor William R. Sears on the occasion of his 80th 
birthday. 
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